大数据开发需要学习哪些编程语言?

对于零基础的朋友,一开始入门可能不会太简单。大数据零基础怎么学?大数据零基础学什么?难吗?要学习大数据你至少应该知道什么是大数据,大数据一般运用在什么领域。对大数据有一个大概的了解,你才能清楚自己对大数据究竟是否有兴趣。


很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习qq群:199427210,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系

大数据零基础怎么学?大数据零基础学什么?难吗?

你知道什么是大数据吗?

要学习大数据你首先应该知道什么是大数据,大数据一般运用在什么领域。对大数据的概念有一个大概的了解,这样你才能清楚自己对大数据究竟是否有兴趣,如果对大数据一无所知就开始学习,有可能学着学着发现自己其实不喜欢,这样浪费了时间精力,可能还浪费了金钱。所以如果想要学习大数据,需要先对大数据有一个大概的了解。

大数据零基础学习什么计算机编程语言?

对于零基础的朋友,一开始入门可能不会太简单。因为需要掌握一门计算机的编程语言,大家都知道计算机编程语言有很多,比如:R,C++,JAVA等等。目前大多数机构都是教JAVA,我们都知道Java是目前使用最为广泛的网络编程语言之一。

容易学而且很好用,如果你学习过C++语言,你会觉得C++和Java很像,因为Java中许多基本语句的语法和C++一样,像常用的循环语句,控制语句等和C++几乎一样,其实Java和C++是两种完全不同的语言,Java只需理解一些基本的概念,就可以用它编写出适合于各种情况的应用程序。

Java略去了运算符重载、多重继承等模糊的概念,C++中许多容易混淆的概念,有的被Java弃之不用了,或者以一种更清楚更容易理解的方式实现,因此Java语言相对是简单的。

需要学习java编程语言

学习大数据开发,Java是必备课程,老男孩教育大数据开发课程中,加入了Java、Linux以及Python等基础内容,即使是零基础,也可让你轻松学会,除此之外,老男孩大数据课程内容还包括: Hadoop、Hive、Avro与Protobuf、ZooKeeper、HBase、Phoenix、Redis、Flume、SSM、Kafka、Scala、Spark、azkaban、大数据分析等大数据专业知识技能!

运用所学知识进行实践

运用所学知识进行实践,学习完任何一门技术,最后的实战训练是最重要的,进行一些实际项目的操作练手,可以帮助我们更好的理解所学的内容,同时对于相关知识也能加强记忆,在今后的运用中,也可以更快的上手,对于相关知识该怎么用也有了经验。

大数据学习路线

java
(Java se,javaweb)
Linux(shell,高并发架构,lucene,solr)
Hadoop(Hadoop,HDFS,Mapreduce,yarn,hive,hbase,sqoop,zookeeper,flume)
机器学习(R,mahout)
Storm(Storm,kafka,redis)
Spark(scala,spark,spark core,spark sql,spark streaming,spark mllib,spark graphx)
Python(python,spark python)
云计算平台(docker,kvm,openstack)

名词解释

一、Linux
lucene: 全文检索引擎的架构
solr: 基于lucene的全文搜索服务器,实现了可配置、可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面。

二、Hadoop
HDFS
: 分布式存储系统,包含NameNode,DataNode。NameNode:元数据,DataNode。DataNode:存数数据。
yarn: 可以理解为MapReduce的协调机制,本质就是Hadoop的处理分析机制,分为ResourceManager NodeManager。
MapReduce: 软件框架,编写程序。
Hive: 数据仓库 可以用SQL查询,可以运行Map/Reduce程序。用来计算趋势或者网站日志,不应用于实时查询,需要很长时间返回结果。
HBase: 数据库。非常适合用来做大数据的实时查询。Facebook用Hbase存储消息数据并进行消息实时的分析
ZooKeeper: 针对大型分布式的可靠性协调系统。Hadoop的分布式同步等靠Zookeeper实现,例如多个NameNode,active standby切换。
Sqoop: 数据库相互转移,关系型数据库和HDFS相互转移
Mahout: 可扩展的机器学习和数据挖掘库。用来做推荐挖掘,聚集,分类,频繁项集挖掘。
Chukwa: 开源收集系统,监视大型分布式系统,建立在HDFS和Map/Reduce框架之上。显示、监视、分析结果。
Ambari: 用于配置、管理和监视Hadoop集群,基于Web,界面友好。

二、Cloudera
Cloudera Manager: 管理 监控 诊断 集成
Cloudera CDH:(Cloudera's Distribution,including Apache Hadoop) Cloudera对Hadoop做了相应的改变,发行版本称为CDH。
Cloudera Flume: 日志收集系统,支持在日志系统中定制各类数据发送方,用来收集数据。
Cloudera Impala: 对存储在Apache Hadoop的HDFS,HBase的数据提供直接查询互动的SQL。
Cloudera hue: web管理器,包括hue ui,hui server,hui db。hue提供所有CDH组件的shell界面的接口,可以在hue编写mr。

三、机器学习/R
R
: 用于统计分析、绘图的语言和操作环境,目前有Hadoop-R
mahout: 提供可扩展的机器学习领域经典算法的实现,包括聚类、分类、推荐过滤、频繁子项挖掘等,且可通过Hadoop扩展到云中。

四、storm
Storm
: 分布式,容错的实时流式计算系统,可以用作实时分析,在线机器学习,信息流处理,连续性计算,分布式RPC,实时处理消息并更新数据库。
Kafka: 高吞吐量的分布式发布订阅消息系统,可以处理消费者规模的网站中的所有动作流数据(浏览,搜索等)。相对Hadoop的日志数据和离线分析,可以实现实时处理。目前通过Hadoop的并行加载机制来统一线上和离线的消息处理
Redis: 由c语言编写,支持网络、可基于内存亦可持久化的日志型、key-value型数据库。

五、Spark
Scala
: 一种类似java的完全面向对象的编程语言。

jblas: 一个快速的线性代数库(JAVA)。基于BLAS与LAPACK,矩阵计算实际的行业标准,并使用先进的基础设施等所有的计算程序的ATLAS艺术的实现,使其非常快。

Spark: Spark是在Scala语言中实现的类似于Hadoop MapReduce的通用并行框架,除了Hadoop MapReduce所具有的优点,但不同于MapReduce的是job中间输出结果可以保存在内存中,从而不需要读写HDFS,因此Spark能更好的适用于数据挖掘与机器学习等需要迭代的MapReduce算法。可以和Hadoop文件系统并行运作,用过Mesos的第三方集群框架可以支持此行为。
Spark SQL: 作为Apache Spark大数据框架的一部分,可用于结构化数据处理并可以执行类似SQL的Spark数据查询
Spark Streaming: 一种构建在Spark上的实时计算框架,扩展了Spark处理大数据流式数据的能力。
Spark MLlib: MLlib是Spark是常用的机器学习算法的实现库,目前(2014.05)支持二元分类,回归,聚类以及协同过滤。同时也包括一个底层的梯度下降优化基础算法。MLlib以来jblas线性代数库,jblas本身以来远程的Fortran程序。

Spark GraphX: GraphX是Spark中用于图和图并行计算的API,可以在Spark之上提供一站式数据解决方案,可以方便且高效地完成图计算的一整套流水作业。

Fortran: 最早出现的计算机高级程序设计语言,广泛应用于科学和工程计算领域。

BLAS: 基础线性代数子程序库,拥有大量已经编写好的关于线性代数运算的程序。
LAPACK: 著名的公开软件,包含了求解科学与工程计算中最常见的数值线性代数问题,如求解线性方程组、线性最小二乘问题、特征值问题和奇异值问题等。
ATLAS: BLAS线性算法库的优化版本。
Spark Python: Spark是由scala语言编写的,但是为了推广和兼容,提供了java和python接口。

六、Python
Python
: 一种面向对象的、解释型计算机程序设计语言。


七、云计算平台
Docker
: 开源的应用容器引擎
kvm: (Keyboard Video Mouse)

openstack: 开源的云计算管理平台项目